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Abstract 

First and second moments of P(R2) are evaluated for 
models denoted symbolically by {g, f ;a} ,  containing a 
atoms known a priori to be correct, g (new) atoms 
correctly and f (new) atoms incorrectly placed. For- 
mulas are derived, valid for the space groups P1 and 
P i ,  using explicitly the set of observed reflections as 
well as the a priori knowledge about the a atoms. It is 
demonstrated that the implementation of the latter 
information decreases tr(RE) and enhances consider- 
ably the resolving power of RE-based criteria to 
discriminate between a correct and an incorrect model. 

1. Introduction 

Our research on automated crystal-structure 
determination is centered around the study of math- 
ematical criteria which indicate the correctness of a 
tentative model. As mathematical indicator function we 
use RE, defined as 

RE ~ (E 2 _ ~2E2)2/x-" 4 -- 'l c /--,Eo, (1.1) 
H H 

where E o and E c are the normalized structure factors 
for the observed N-atom structure and the tentative 
n-atom model (n < N), respectively. For point atoms 
with equal scattering power r/2 can be written as 

2 2 l~ 2 ~ l~c/~o = n / N .  ( 1 . 2 )  

So far, RE-Controlled structure evaluation routines 
(e.g. Van de Mieroop, 1978) used only the first moment 
of the probability density function P(RE). The decision 
whether a model is correct or not is based on the 
comparison of the actual R 2 value of the model with an 
appropriate theoretical estimate of R 2. This somewhat 
simplistic approach had to be taken, instead of a more 
sophisticated and powerful one based on statistical 
decision procedures, for want of a theory to evaluate 
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the higher moments of P(R2). Recently, we showed 
(Van Havere & Lenstra, 1983a, b; referred to hereafter 
as parts I and II) that higher moments can only be 
evaluated by taking the finiteness of data sets explicitly 
into account through the concept of conditional 
probabilities. In this way we could remove the 
inconsistencies of older theories, which assumed the 
existence of infinite data sets. 

The goal of an X-ray determination is a complete 
and correct structural model or an {N,0} model in a 
nomenclature where {g, f }  represents a model with g 
correctly andfincorrectly placed atoms (g +f_< N). In 
practice one may attain {N,0} by two different 
approaches: (i) from a complete but only partially 
correct starting model or (ii) from an incomplete but 
correct one. The first, which may be called the 
rearranging or random-atom approach, starts in the 
worst possible case from {0,N}, rearranges atomic 
positions, sifts out incorrect atoms and proceeds via 
intermediate models {i ,N-- i}  to the final structure. A 
starting model may be obtained from one of the many 
direct-methods programs. The second, which may be 
called the additive or zero-atom approach, starts from a 
partial model, independently known to be correct 
{g,0}. Then, new atoms are added iteratively and 
tested, thereby avoiding the addition of incorrect 
atoms. The starting model may be obtained from a 
Patterson map, while possible new atomic coordinates 
are generated from a heavy-atom Fourier synthesis or 
from procedures such as D I R D I F  (Beurskens & 
Noordik, 1972). In the zero-atom approach one strives 
for a test procedure which allows g to start from zero: 
the { 0, 0 } model. 

In part III (Van Havere & Lenstra, 1983c) of this 
series we demonstrated that, using R 2 as an indicator 
function, the zero-atom approach has the better chance 
of being successful. This followed from a study of the 
resolving power S of R 2, defined as 

( R  2 {incorrect }) - (R 2 {correct}) 
S =  (1.3) 

3[o'(R 2 {incorrect }) + o'(R 2 {correct })] 
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Clearly, the resolving power increases if one lowers the 
spread of P(R2). An improvement, not yet considered, 
is to use the information about the atoms already 
known to be correct. We will do so by using the set of 
structure-factor amplitudes, g',, = {Ea(H)}, associated 
with the known part of the model as an extra condition 
in the calculus of probabilities. The other, normal, 
condition is the set of E values observed for the 
structure, g'o - {Eo(H)}. We will proceed to evaluate 
(Rz;g 'o ,~a)  and az(R2;g~,~"o) for the space groups 
P1 and P1. The implications of the a priori knowledge 
will be discussed for three different situations: (i) all 
added, trial atoms are badly misplaced; (ii) all added, 
trial atoms are correctly positioned; (iii) some added 
atoms are correct, the others are incorrect. 

To incorporate the a priori known atoms we modify 
our model nomenclature to {g,f;a},  where a denotes 
the a priori known atoms, g the correctly and f the 
incorrectly positioned ones. Within the present frame- 
work we will limit ourselves to calculate the first and 
second moments of P(Rz), since P(R2) can be 
approximated as a Gaussian with sufficient accuracy 
(part I). 

Y. <E~;Eo, E~> 
H 

(R2;g'o,V~a> = 1 + #7 4 
y E 4 
H 

Y. EZo <EZc;Eo, Ea> 
H -- 2rl z 

E4o 
H 

a2(R2;~o,~a) {~, 8 8. 4. 2 
= (<Ec,Eo,Eo>--<Ec,Eo, Eo>) 

H 

(1.4) 

6 2 6.  -- ~ 4~ Eo((Eo,Eo, E,, ) 
H 

- -  <E4c;Eo,Ea><E2c;Eo,Ea> ) 

structure. The distribution needed to evaluate formulas 
(1.4) and (1.5) is P(Ec;Eo,Ea). Realizing that for point 
atoms 

EH=N- ' /2F , ,  (2.1.1) 

where F n is defined as usual as 

N 
F n =  ~. f j exp( - -  2rdHrj), (2.1.2) 

j = l  

and realizing that for added incorrect atoms E o and E C 
are statistically independent variables, one can write 

P(Ec, Eo;Ea) 
P(Ec;Eo, Ea) = 

P(Eo;E~) 

If it is assumed that 

P(Ec,Eo;Ea) = P(E~;Eo) P(Eo;Eo), 

then 

P(Ec;Eo,Eo) = P(E~;Eo). (2.1.3) 

If we then assume that the atoms in the rest structure 
and in the added model are both randomly placed, we 
can use the formulas derived by Srinivasan & 
Parthasarathy (I 976) for large structures: 

2EjI~ (_17~F,2 + rI2FE 2 ) 
P(Ec;Ea) - 2----------{ exp r/Z z 

F l C -  /la c -  ~a 

x I ° ~  ~-~cZ----~--~a 7 '  (2.1.4) 

where I 0 is a modified Bessel function of the first kind 
and order zero. r/~ and r/a 2 are respectively the number of 
atoms in the total model and the number of atoms 
known a priori. The moments of this distribution can be 
written as (see Appendix A) 

+~ 4 a 4. Ea > 4rl Eo((Ec,E o, 
H 

-- (E2;Eo, Ea>2)}/{~ E4} 2. 
H 

(1.5) 

Formulas (1.4) and (1.5) reflect the approximation of 
(E~;~o,~",,) by (E'~;Eo,Ea), i.e. we ignore the 
correlation between two points in reciprocal space. The 
necessity to do so as well as the implications are 
analyzed in part I. It was shown that this approxi- 
mation leads to negligible errors. 

2. The added atoms are incorrect 

2.1. Space group P I 

Fig. 1 depicts the relations between structure factors 
associated with the different constituents of the total 

""', ,\Fql 
Fo ! Fq2 " \  

Fig. 1. Relation between structure factors of an N-atom structure 
(F o) and an n-atom model (Fc), in which f atoms (F:) are 
incorrectly placed and a atoms are placed on correct positions, 
known a priori F(a); i.e. the situation {O,f;a}. The figure also 
gives the relation between structure factors of an N-atom 
structure in the situation {g,0;a } if one reads Fg in place o f f  z. Fo, 
and Fq2 are taken to arise from random rest structures. 
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(E~c,;Ea>=n! c-- rla 72 2 
712 IFI -- n; 1; tic-- rla] 2 2 ' 

(2.1.5) 

in which ,Fl(a;fl;x) is a confluent hypergeometric 
function (Bateman, 1953). Since in our case a = - n  (a 
a negative integer), (2.1.5) reduces to a polyomial in El,  
which gives after substitution in (1.4) 

<R2; go, -~ a> 

-- 2--~o E~o Lrl2Ea + 1 -  rl 2] 

+ ~ [ q  E~+4~ l-r~]E a 

+ 2 1---~-{2] E4o, 

and, after substitution in (1.5), 

o '2(R 2; g 0 ,  f f a )  

~( 
+ 52-~c 1 -  

+ 8o-- q~ (1- 

( 1--~c2) E 6 

~t 3 (1 ~:t41 

r/6 [4r/4 ( r/21 
-- Z 4 "~--~" E2 1--  4 

n rl° -~e rl2c] Ea 

( ( +12  r/--2~ 1-- + 4  1 -  

+ 4~E4o 2~ l -  rl~]Ea 

(2.1.6) 

(2.1.7) 

2.2. Space group P1 
For space group P[ we define E n as 

N 
E n = (2/N) 1/2 ~ cos (2~zHrj), (2.2.1) 

j=l  

where N is the number of atoms in the asymmetric part 
of the unit cell. Completely analogously to P1 we take 

the distribution given by Srinivasan & Parthasarathy 
(1976): 

P(Ec;Ea) 
_ ( 2r/~ I '/2 { r/2E 2 + r/~E~ 

~zr(r/~--~r/~)] exp -- o-T-S2- 2(qc- qa) 

rlcrlaEcEa I 
x cosh -~2---LS ." (2.2.2) 

c- -qa  } 

Its moments can be written as (see Appendix B) 

2n. 2, F(n+½)(rl~-rl2)" 
<Ec 'Ea) = r(½) U2c 

x 1 f  1 - - r / ;½; - -½ _r/~E~ ] (2.2.3) 
2 2 " r / , . -  r/a ] 

Again, the hypergeometric function reduces to poly- 
nomials in E ] and substitution in (1.4) and (1.5) gives 

(R2;go,~a) 

(1 
~o L~ ,l~/ 

+ ~o [q 4E4 +6--~ 1 -  ~fle]Ea 

- 

°2(R2; ~o, ~a) [6 6 
= -2-/ ~ 1 -  E a 

~o ~c ~] 

( ~t ~ + 168 r/--~4~ 1 -  E 4 

+384r/A 0 _ r / ~ / 3  (1 r/2al 4] 
rl~ q2] EZa + 96 r/c 2] 

[ - - ~  4-~oE2o 8---~c -- tl2c]Ea 

+36  r/_£ 1 -  + 12 --  

+X4~Eo  4 4 ~  l-r/~c]Ea 

+ 2  1--1,/2]] Eo 4 . 

(2.2.4) 

(2.2.5) 
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3. The  added a t o m s  are correct 

3.1. Space group P1 
The relations between the contributions to the 

structure factors are illustrated in Fig. 2. Again we have 
to know the distribution function P(Ec;Eo, Ea). Now, 
however, the correlation between E c and E o does not 
vanish and thus the distribution will be more complex. 
Using the theorem of Bayes, we have 

P(Eo;Ec, Ea) P(Ec;Ea) 
P(E~;Eo,Ea) = (3.1.1) 

P(Eo;Ea) 
P(Ec;Ea) is given by (2.1.4) and P(Eo;E a) is again 
given by (2.1.4) provided E o and 17o replace E c and r/c. 
The distribution P(Eo;Ec,E a) is equal to P(Eo;E c) 
because the condition towards E a includes the one 
towards E c. Again P(Eo; Ec) is given by (2.1.4) by 
suitable change of parameters. Substitution of the 
relevant formulas into (3.1.1) gives 

P(Ec;Eo,Ea) 
2r/2 ( r / 2 -  q2)E c [2Gr/aEoEa) 

----- (r/2 q c~2)(-2qc r/2) 101 " - - 2 - -  - ' ~  
- -  - \ G -  r/a 

x exp {--[(q2 r/a2)2 2 2 2 2 2 ,2 - , loEo + (,720- r/a) 'TcEc 

+(,702 2 2  2 -- r/c) r/aEa ] 

x [(,70 ~ - 2 ) ( - ~ -  - - ,,~ , ,c r/~)(r/o ~ r/a~)1-1 } 

(2r/°r/cE°Ecl I/2r/cr/aEcEa) 
x I °  -2-~--L-~ I0 ~ ; - -25-  (3.1.2) 

r / o -  , ~  ] ~, , , ~ -  ,,~ 
o 

The intensity moments necessary to calculate the first 
and second moment ofR 2 for this situation are 

(E2;Eo,Ea) = r/~E2o + r/2E2a + 173 

I l (2 r/4 Eo Ea) 
+ { 2 r / l r / 2 E o E  a } 

Io(2r/aEoEa) 
4 .  (Ec,Eo,Ea) 

4 4 2 2 2 2 4 4 = r/iEo + 6r/lr/EEoEa + r/EEa 
2 2 2 + 4r/xr/aE o + 4r/2r/3Ea + 2r/2 

3 3 + {4r/xr/~EoEa + 4r/lr/3Eo E3 + 6r/lr/~r/3EoE,,} 

I1 ( 2r/ 4 EoEo) 
× 

Io(2r/4EoEa) 

(E~;Eo,Ea) 
6 6 1 5 / , / 4 2  4 2 2 4  2 4 6 6 

_ - r/lEo + r / 2 E o E a  + 1 5 r / l r / 2 E o E a  + r l 2 E  a 

2 2 2 2 4 4 + 9r/4r/3E 4 + 50r/lr/2r/aEoEa + 9r/Er/aE a 

+18r/~ 2 2 18r/22r/3E . 2  2 r / 3 E o  + + 6r/] 
5 5 5 5 3 3 3 3 + {6r/lr/2EoE a + 6r/xr/2EoEa + 20r/xrl2EoE a 

+ 30r/~r/2r/3E3Ea + 3Or/11/23 ?]3 EoE~3 

Ix ( 2r/ 4 EoEa) 
+ 22r/tr/2r/2EoEa} 

Io(2r/4EoEa) 

(EcS; E o, Ea> 
8 8 6 2 6 2 7 0  r / 1 . 4  b-'4/-,-'4 _ - r/,E o + 28r/lr/zEoEa + ,t2.~,oL, a 

2 6 2 6 8 8 + 28r/,r/2EoEa + r/2Ea 
6 6 4 2 4 2 + 16r/lr/aE o + 224r/lr/2r/aEoEa 

2 4 2 4 6 6 + 224r/lr/Er/3EoEa + 16r/2r/aE,, 

4 2 4 3 8 0 r / 2 . . 2 - - 2 r E r 2  72r/4 r/aEa + 7 2 r / l r / a E o  + q 2 q 3 Z : ' o Z ~ a  + 2 4 

+ 9@2r/~E 2 + 96r/Er/]E~ + 24r/~ 

7 7 3 3 3 3 + {8r/lr/EEoEa + 8r/lr/72EoE7 a + 280r/lr/2r/3EoEa 
5 3 5 3 3 5 3 5 + 56r/lr/2EoE a + 56rhr/2EoE a 

+ 84r/]r/2r/3 5 EoE a + 84r/l r/~r/3EoESa 
2 3 + 2 0 8 r / ~ r / 2 r / 3 e o E .  + 2 0 8 r / l r / ~ r / ~ E o E ~  

11 (2r/4EoEa) 
+ lOOr/,r/2r/]EoE,~} Io (2r/4EoEa), (3.1.3) 

where 

r / , =  ( r / ~ -  r/~)r/o (r/o ~ - -  r/~)r/a 

(r/o ~ - -  r / ~ ) ~ c '  r/~ = ( ~ o  ~ - -  ' ~ ) r / c '  

.( ,7o ~ 2 2 - r / c ) ( r / c - - r / ~ )  r/or/o 
r /a= (r/o 2 2 2 ' r / 4 -  . (3.1.4) 

- r/a)r/c ( r /~o -  r/~) 

I 1 and I 0 are modified Bessel functions of the first kind 
respectively of order one and zero. The general 
procedures to obtain these moments are discussed in 
Appendix C. Substitution of these moments in (1.4) and 
(1.5) would give the wanted expressions. The expres- 
sions are rather lengthy and will be omitted. Their 
evaluation, however, is a trivial matter using a 
computer. 

3.2. Space group Pi  

The moments of the conditional probability distribu- 
tion in P i  are calculated in an analogous way to those 
in P1, starting from (3.1.1). 

In P1 the distributions P(Eo;Ea), P(Ec;E a) and 
P(Eo;Ec) are readily obtained by suitable changes of 
parameters in (2.2.2). Then, substitution into (3.1.1) 
gives 

P(E j, E o,E a) 

(! = q c  q o  r/2)  c o s h - I  / 7 o -  r/a ] 

(r/~o - r/~)( r/~ - r/]) ] - 5 -  -~  
×exp{_½[(r /2  r/~)2 2 2 22 2 2 - r/oEo + (r/~o- r/o) r/cEc 

+ (r/~o r / ~ ) ~  - G, Ea] 

-- r/9(r/o r/2a)1-1 } xt ( r /o  ~ r /~)(r /~_ 2 2 _  

x cosh ~ - -  25 cosh . (3.2.1) 
~, r/c-r/o ] \ r/o-r/c ] - ~ - ~  
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The intensity moments necessary to calculate the first 
and second moments of R 2 for this situation are 

( E c 2 ; E o , E a )  2 2 2 2 = r l ,E  o + rl2E a + F]3 

+ {r h h 2 E o E  ~} tanh (q4EoE~)  

(E4e;EoEa) 
4 4 = rl ,E ° + 6r]21.2p2b-'2 4 4 ,12,-,oL, a + l']2E a 

2 2 2 2 + 6rl lq3Eo + 6rhr/3E ~ + 3r/2 

3 3 3 3 + {4rl ,rlzEoEa + 4r l , q zEoEa  

+ 12r/, qEq3EoEa } tanh(r l4EoEa)  

(E6c;Eo,Ea> 
6 6 4 2 4 2 6 6 = q , E o  + 15r l l r lEEoE a + 15/72~4b-'2b-'4,t2L,@~., a -b rl2E a 

4 4 90r/2 r/22 2 2 4 4 + 1 5 q , q 3 E  o + + rl3EoEa 15r/2r/3Ea 

2 2 2 45r/2 2 2 + 45rl,r13Eo + q3E,, + 15r/~ 

+{6  5 5 5 5 3 3 3 3  r l lr l2EoEa + 6~I, + ~hEoE~ 20r/1~12EoE~ 

+ 60q~rl2q3EaoE~ + 60qlq~q3EoEaa 

+ 9 0 q , q 2 q ~ E o E  a } t anh(q4EoEa)  

(E~;Eo, E~> 
8 8 ~ 6 ~ 2 ] t ? 6 L 7 2  4 4 4 4 - r l ,E o + 28 + 70rl lr i2EoE a - -  ,l l , 12~ ,  a,_, a 

2 6 2 6 8 8 
+ 2 8 q l q z E o E  a + qEEo 

6 6 4 2 4 2 + 2 8 q , q 3 E  o + 420qlr12q3EoE ~ 

2 4 2 4 6 6 + 420q,r12r13EoE a + 2 8 r / f f / 3 E  a 

4 2 4 2 2 2 2 2 4 2 4 + 210rl lq3Eo + 1260rllqEr13EoE a + 210q2q3E a 

2 3 2 2 3 2 + 420qF13E o + 420r/Er/3E a + 105r/4 

+ { 7 7 7 7 3 3 3 3 8rllrl2EoE a + 8r l l rhEoE a + 560rllr12r13EoEa 

5 3 5 3 3 5 3 5 + 56rilr12EoE~ + 56rl,r12EoE~ 

5 5 5 5 + 168rllq2r13EoE a + 168rilr12r13EoE a 

3 2 3 3 2 3 + 840rl ,rhr13EoE ~ + 840rllr i2q3EoE a 

+ 840rl,r12rl]EoEa} tanh(r l4EoEa).  (3.2.2) 

The general procedure to obtain these moments is 
discussed in Appendix D. Substitution of these mo- 
ments in (1.4) and (1.5) gives the wanted expressions 
for the average value and spread of R 2. 

4. S o m e  added a t o m s  are correct,  others are incorrect  

4.1. Space  group  P1 

Let the added fragment contain, besides the a a 
prior i  known atoms, g atoms at their correct position 
and f atoms which are incorrectly placed. In terms of 
structure factors the relations are depicted in Fig. 2. 

The derivation of P ( E ~ ; E o , E a )  is analogous to that 
described in part III (Van Havere & Lenstra, 1983c). 

oo 

P(Ec;Eo,Eo)= f P(Ec,Ep;Eo,Ea) dEp. (4.1.1) 
o 

From the theorem of Bayes we know that 
oo 

P(Ec;Eo,Ea)= f P(Ec;Ep,Eo,Ea)P(Ep;Eo,Ea)dEp. 
0 

(4.1.2) 

Using the arguments used in part III one can easily see 
that 

P(Ec,Eo;Ep) 
P(Ec;Ep,Ea,Eo)= P(Ec;Ep,Eo)= 

P(Eo;Ep) 

Under the assumption that E c and E o are statistically 
independent variables we have 

P(Ec;Ep,Eo,E a) = P(Ec;Ep). (4.1.3) 

It is also easy to see that (4.1.3) has the same form as 
(2.1.4), whereas P(Ep;Eo,Ea) is analogous to (3.1.2). 
The integral resulting from substitution of these 
distributions in (4.1.2) can be expressed directly as a 
confluent form of a Lauricella function (Exton, 1978). 
We have, however, obtained the moments of this 
distribution in an indirect way, which allows us to use 
the formulas derived for the cases where either the 
added atoms are completely correctly or completely 
incorrectly positioned. From (4.1.2) and (4.1.3) one 
sees that the moments can be written as 

oo 

f P(G;G) 
0 0 

× P ( E o ; E o , E  a) d E o d E  e (4.1.4) 

Integrating first over E~ gives 
O(3 

(EEc,;Eo, Ea) f 2,. = (Ec,Ev) 
0 

x P(Ep; E o, Ea) dEv, (4.1.5) 

where (E~"' ,Ev) is equivalent to (2.1.5). Inserting this 
moment, which is a polynomial in E~, in (4.1.5) shows 

Fg 

Fig. 2. Relation between structure factors of  an N-a tom structure 
( F  o) and an n-a tom model (Fc). in which g and f a toms are 
placed respectively correct  and incorrect, a a toms are placed a 
priori. The contribution of  all correct  a toms is denoted p = a + g. 
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us that (4.1.5) also reduces to a polynomial but now 
one in moments of P(Ep;Eo,Ea). These moments are of 
the same form as (3.1.3). It would be a laborious task 
to perform all further substitutions by hand. Fortun- 
ately, the fully expanded formulas are not needed to 
calculate the numbers needed to describe these models. 

correct trial atoms) in the analysis S(R2) _> 1 is 
reached, the better an R 2 controlled determination 
lends itself to automation. It is therefore most impor- 
tant that the incorporation of a priori knowledge (Table 
3) shifts the turning point S(R 2) _> 1 towards lower a 
values. 

4.2. Space Group P[ 

The formulas for this space group can be obtained in 
an identical way as for P1, by simply using everywhere 
in the calculations the moments of P1 given in §§ 2.2 
and 3.2. 

WVH thanks the Belgian organization IWONL for 
financial support. The help of Professor H. J. Geise in 
the preparation of this manuscript is gratefully acknow- 
ledged. We also wish to thank Dr G. H. Petit and Mr J. 
F. Van Loock for stimulating discussions. 

5. Discussion 

The aim of this work is to improve the usefulness of the 
R2 criterion in the zero-atom approach by taking 
explicitly into account that, at some particular point in 
the analysis, the positions of a number of atoms in the 
test model are known to be correct. Such knowledge 
might either have come from an independent outside 
source (e.g. a heavy atom from a Patterson map, or a 
fragment located after a rotation-translation search) or 
be the result of earlier stages in the R2-controlled 
analysis. This extra information is then added to the 
information contained in the set of observed E values. 
The operation is successful if it increases the resolving 
power S (1.3) of the R 2 criterion compared to S(R 2) in 
which only the knowledge about E o values is taken into 
account. 

We can limit the discussion to the space group P1, 
since for P1 the numerical values are different, but the 
general conclusions are the same. In our example the 
observed structure is a set of 100 equal atoms 
randomly placed in the cell, with a corresponding set of 
1530 observed reflections. We compare the average 
value of R2 (Table 1) and its spread (Table 2) for 
models {a + g,f;0} versus {g,f;a} and particularly 
S(R z) (Table 3) for situations going from {a,0;0} to 
{a + g,0;0} versus {0,0;a} to {g,0;a}. 

Rz values for {g,f;a} were calculated as outlined in 
§ 3.1, those for {a + g,f;a } from equations (3.12)- 
(3.13) given in part III. The numbers in Table 1 show, 
as was expected, only a very small dependence upon 
the introduction of a priori known atoms. Since the 
number of atoms treated statistically is smaller if a 
atoms known a priori are present, one expects, 
however, a decrease of o(R2). Table 2 shows this 
indeed to be the case. Substitution of the appropriate 
values in (1.3) gives the resolving power, S(Rz),  of the 
R z criterion between two models. Table 3 demon- 
strates that the incorporation of a priori known atoms 
increases S(R2) considerably. Values of S > 1 indicate 
a perfect discrimination between models. The earlier 
(i.e after the addition of the smaller number of new 

Table 1. Comparison of  average R 2 values for some 
models with and without the knowledge of  a priori 

correct atoms 

a {0,10;a} {a,10;0} {10,0;a} {a + 10,0;a} 

10 0.83093 0.83062 0.80116 0-80058 
20 0.75375 0.75019 0.70399 0.70027 
30 0-66616 0.66951 0.59759 0.59980 
40 0-57661 0.58874 0.48307 0-49932 
50 0.49543 0.50804 0.38855 0.39895 
60 0.42474 0.42753 0.29679 0.29877 
70 0-35675 0.34730 0.20439 0.19887 
80 0.28035 0.26741 0.10284 0.09927 

Table 2. Comparison of  o(R 2) values for some models 
with and without the knowledge of  a priori correct 

atoms 

a {0,10;a} /a,10"0} {10,0;a} /a + 10,0;a} 

10 0-00549 0.00650 0-00626 0-00751 
20 0.00709 0-00992 0.00764 0.01069 
30 0.00832 0.01292 0.00841 0.01294 
40 0.00932 0-01512 0.00871 0-01401 
50 0-00982 0.01627 0-00843 0-01375 
60 0.00991 0.01624 0.00774 0-01208 
70 0.00997 0.01499 0.00656 0.00906 
80 0.00972 0.01265 0.00422 0.00489 

Table 3. Comparison of the resolving power, S(R2), 
with and without using the knowledge of  the a priori 

correct atoms 

a S I S2 

10 0.84463 0.71475 
20 1.12648 0.80753 
30 1.36630 0.89847 
40 1.62775 1.02306 
50 1.95202 1.21136 
60 2.41602 1.51578 
70 3.07278 2.05737 
80 4-24275 3.19514 

$1 = ((R2{0,10;a}) - (R2{lO,O;a}))/3lo(R2tO, lO;a}) + o(R2{ 10,0;a})l. 
$2 = ((R2{a,  lO;a}) - (R2{a + lO,O;a})/3[o(R2{a, lO;a}) 

+ o(R2{a + 10,0;a})l. 
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APPENDIX A 

The moments of (2.1.4) are written as 

(E~c;Ea) 

- 2r/--------~2~ exp -~--Ea 
2 2 

GO 

x f E~"+I exp( " ~b -rf'E£2 1 2  __ 7]a]2 

0 

.2rlcrlaEcEa 
x I o - i - -~.2 " dEc" 

t i c -  tla ] 
(A.1) 

Using a generalization of Weber's first exponential 
integral (Bateman, 1953), we get 

oo 

J Jr(at) exp(-p2t  2) t "-~ dt 
0 

r(½v + ½1a)(½a/ p)V a 2 
iF , (½v + ½U; v + 1, --~p2)' 

2 p" F(v + 1) 

Re(v + U) > 0, a E C, Re(p 2) > 0. (A.2) 

This, together with the identity (Bateman, 1953) 

I ,(z)  = exp(- ikvn)  Jv[z exp(in/2)] 

[-- n < arg(z) < n/2] (A.3) 

and Kummer's first transformation (Bateman, 1953) 

,F , (a;b;x)  = e x ~F,(b - a ; b ; -  x), (A.4) 

we can write (A. 1) for the even moments,/~ = 2n, as 

E2n'Ea) C ' 

t/2 ,F, n; I; r/ZE2a (a.5) 

with 
a x a(a + 1) x 2 

~F~(a;b;x)= 1 + - - - +  + . . . .  (A.6) 
b I t b ( b +  1) 2! 

Therefore, (A.6) reduces, for a a negative integer, to a 
polynomial in Ea 2 of degree n. 

APPENDIX B 

The moments of (2.2.2) are written as 

. / 2r/2 ) 1 ' 2 [  ~__2:~  ] 

(EUc,Ea)=~n(rlT~ - rl2a ~ exp 2(r /2-  r/Za)j, 

f x Ec ~ exp - 2(rg2 __ ~a)2 J 
0 

~]c ~]a Ec Ea 
x cosh dE c. (B.1) 

Using the identity (Bateman, 1953) 

cosh (z) = (lrZ/2)l/2I_l/2(Z) (B.2) 

and (A.2)-(A.4), we find that (B. 1) becomes 

2.. 2, F(n + ~) ( r/~- r/~Z)" 
( E c ' E a ) = F( ½) rl2c 

rlaEa (B.3) 
x , F ,  - - n ; ½ ; - ~  r/c 2 - ~ a  ' 

since --n is a negative integer (B.3) reduces to a poly- 
nomial in E~ of degree n. 

APPENDIX C 

The intensity distribution for correct added atoms, 
(3.1.2), is of the form 

P(x,Y,z)=ae-bxe-CX'lo(dx)Io(gX).  (C.1) 

Thus, 
GO 

( x2n;y , z )=  ae-b f x2n+le-cX2Io(dx)Io(gx) dx. 
0 

(C.2) 

For n = 0 the result is easily found using the identity 
(Bateman, 1953) 

GO 

J xe -p~ Io((OX)Io({X) dx  
0 

So 

( x ° ; y , z ) =  - -  
ae-b 

2e 

1 [¢pz+~z io{qg~ ] =~peXp / 4p ) \~p]" 

(c.3) 

exp\  4e I° ~ e "  (C.4) 

To obtain the moments for n 4: 0, we use a theorem 
from the theory of Laplace transforms (Abramowitz & 
Stegun, 1972) which states that 

GO 

f tne-StF(t)  d t = ( - 1 ) n f ( n ) ( s )  (C.5) 
0 

with 

d"f(s) 
f~"~(s) - - -  

ds n 

GO 

f (°)(s)= f exp(--st) F(t)  dt. (C.6) 
o 

Replacing in (C.2) ex z by t and introducing an extra 
variable s we get 

a e - b  GO 
(x2n;y ,z)  - 2c "+' lira t ~ exp(-st)  

S--*' 
0 

x Io[d(t/c)ml Io[g(t/c) 'hI dt. (C.7) 
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Equation (C.7) has now the form of (C.5) and thus 
after resubstitution of cx 2 for t we get 

a e  -t~ 

( x Z " ; y , z ) = ~ l i m  {(-1)" 
C n S~  1 

oO d"f 
x - -  x e x p ( - s c x  2) Io(dx)  Io(gX) d x  }. 

ds n 
o 

(c.8) 

Since this integral is now of the form of (C.3) one gets 

a e - b  {. d_s~n 1 
( x 2 n ; y , z ) -  2c "+~ (-1)"  lim 

S--*I S 

( d 2 + g 2 1  ( G ) }  
x e x p  \ 4cs ] I° 

(C.9) 

The only remaining task now is to perform the 
differentiation for those values of n needed for our 
purpose and to substitute the correct expressions for 
a, b, c, d and g. This gives us expressions (3.1.3). 

A P P E N D I X  D 

The intensity distribution (3.2.1) for correct added 
atoms in the space group P 1 is of the form 

Thus, 

P( x ; y , z  ) = ae -b e -cx2 cosh(dx) cosh (gx). (D. I) 

O0 

( x 2 n ; y , z )  = ae-b f X 2n exp (--cx 2) 
o 

x c o s h ( d x ) c o s h ( g x )  dx. (D.2) 

Using the relation 

cosh (x) = (e ÷x + e-X)/2 (D.3) 

and substituting 

d + g  
t = cl/2x + - -  (D.4) 

- 2Cl/2 

7 [; (, + exp 4c ] d g 

2C 1/2 

d - g \  2n 

2yz J e t2dt 

oO 

_ d - g 2,, +s 
d - g  

(D.5)  

2C 1/2 

Then, using the relation (Abramowitz & Stegun, 1972) 

2 
(t - x)" e_t2dt = i2" erfc(x), (D.6) 

7~ 1/2 d r/! 
X 

where 

we get 

O0 

i" erfc(z) = .f i "-1 erfc(t) dt, n = 0,1,..., (D.7) 
2 

( x Z n ; y , z )  

rcln a(  2n)! 

8cn+ i/2 

d+g] 

+'2°er c[7 I + exp 4c 

d - g  x [,2nerVe ( 
(0.8) 

With the help of the recursion relations (Abramowitz & 
Stegun, 1972) 

in the various integrals we get 

( x Z " ; y , z )  

- 4cn+t/-------- ~ exp 4¢ ] 

× d+ g + ~ '] e-t2dt 

2C 1/2 

+ d  -- 2---C-~] e-t2dt 

2¢1/'- 

z 1 
i" erfc(z) = - - i"- l erfc(z) + - -  i "-2 erfc(z), 

n 2n 

n = 1,2,3 . . . .  (D.9) 

and the identities 

Z 
i -l erfc(z)= ~-q77 e-z2 

i ° erfc(z) = erfc(z), (D. 10) 

we can write (D.8) in terms of exponentials and error 
functions. After some algebraic manipulations and 
substitution of the correct expressions for a ,b ,e ,d  and g 
we get (3.2.2). 
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Abstract 

ZnS crystals having wide polytypic regions were grown 
in sublimation. Twelve new polytypes of the family 18L 
were identified in one specimen. X-ray 10. l oscillation 
photographs are presented, the observed and cal- 
culated intensities are compared. A modified expres- 
sion for intensity computations of rhombohedral 
polytypes is described. 

Introduction 

ZnS crystals grown by sublimation of a large number 
of adjacent regions stacked along their common c axis. 
Most of these regions are faulted 2H structures. A 
small number of specimens contain uniform polytypic 
regions, most of them less than 100/an wide (along 
their c axis), wider regions are rare and regions of 500 
~tm are extremely rare (Alexander, Kalman, Mardix & 
Steinberger, 1970). 

Experimental 

The polytypes reported here were found in a platelet 
(specimen 17-1) grown by the static sublimation 
method (Pfitek, 1961) with strict stabilization of 
temperature (_+0.02 K) and pressure (+ 100 Pa) during 
growth. A peculiar characteristic of the crystals is the 
abundance of specimens with wide uniform polytypic 
regions: tens of specimens were found in each growth 
batch containing polytypic regions of 500 /tm and 
wider. 

* In partial fulfilment of requirements for the BS degree. 

0108-7673/83/060933-04501.50 

Cu Ka radiation was used to take the 10.l row 
lines 10 ° e-axis oscillation photographs of the poly- 
types. These are presented in Fig. 1. A list of all 
currently identified ZnS polytypes of the family 18L is 
given in Table 1. Observed and calculated intensities of 
the 10. l reflections of the new polytypes are compared 
in Table 2. The calculated intensities are proportional 
to I FI 2, where F is the structure factor: they include the 
Lorentz and polarization factors and are normalized to 
give the strongest intensity as 100.000. 

The method of identification used is the 'elimination 
method' reported previously (Mardix, Kalman & 
Steinberger, 1970). 

The structure factor of rhombohedral polytypes 

The expression for the structure factor of a ZnS 
polytype commonly used in computations is given by 
(Mardix, Kalman & Steinberger, 1970): 

IFhk.t 12 = f2ltOhk.tl2 

where 

3n/ 
f 2 =  + fs + 2fz. A c o s -  

2n 

fz,  and fs are the atomic scattering factors of Zn and 
S, respectively, n is the number of layers in the unit cell. 

F o r h - k =  l m o d 3 :  

Iq)hk.t 12= COS 2n + 
2=1 

+ [z~l sin 27r (--~- + -~-) 1 2 
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